Annex 1 to: NL/DEK/ExTR11.0033/02, IECEx DEK 11.0042X, KEMA 03ATEX1074 X Issue 6

For the combined connection of the different supply, input and output circuits, the installation instructions of the manufacturer shall be observed. From the safety point of view the circuits shall be considered to be connected to earth. The following conditions of use shall be observed:

The indicator is classified as group IIB/IIIC. However, classification of the indicator as group IIC is possible, only under the following conditions:

- The indicator is either supplied by
- the internal supply (option -PC); or
- the external supply connected to terminals 0 and 1 (option -PD); or
- the circuit supply connected to terminals 7 and 8 (option -AP);

The maximum values for any of those circuits are those as defined for group IIB/IIIC;

- no other active external intrinsically safe circuits may be connected to the indicator, with exception of circuits connected to terminals 3 and 4 and/or terminals 5 and 6 ; the maximum values for any of those circuits are those as defined for group IIB/IIIC

	Electrical data		Model F1 .. -A Model F1 .. -U	Model F1 .. -P Model F1 .. -T	Model F1 .. -R
Internal supply (Connector) Option -PC	For use with the certified replaceable battery type FW-LiBAT-... or to another certified non rechargeable battery in type of protection intrinsic safety Ex ia IIB/IIC/IIIC, with the following maximum values:$\begin{aligned} & \mathrm{U}_{\mathrm{i}}=4 \\ & \mathrm{I}_{\mathrm{i}}= \\ & \mathrm{P}_{\mathrm{i}}=50 \\ & \mathrm{~L}_{\mathrm{i}}= \\ & \mathrm{C}_{\mathrm{i}}=200 \mathrm{~mA} \\ & \mathrm{~mW} \\ & \mathrm{mH} \end{aligned}$				
	In type of protection intrinsic safety Ex ia IIB/IIIC or Ex ia IIC (as indicated below), only for connection to a certified intrinsically safe circuit, with following maximum values:				
External supply input Option -PD Terminals 0 and 1	U_{i} $=$ 30 I_{i} $=$ 100 P_{i} $=$ 750 $\mathrm{~L}_{\mathrm{i}}$ $=$ 0 C_{i} $=$ 0	V mA mW mH $\mu \mathrm{F}$	Ex ia IIB/IIIC If external circuits are connected to the external supply outputs, terminals 0 and 2 and where applicable terminals 9 and 11 and/or 12 and 14, the total amount of external capacitance and inductance of the circuits, connected to that terminals, is added to the effective internal capacitance C_{i} and inductance L_{i} of this external supply input circuit.		
Active inputs (Active pulse, 0/4-20mA, 0-10V)	$\begin{array}{rlr} \mathrm{U}_{\mathrm{i}} & =30 \\ \mathrm{I}_{\mathrm{i}} & =100 \\ \mathrm{P}_{\mathrm{i}} & = & 750 \\ \mathrm{~L}_{\mathrm{i}} & = & 0 \\ \mathrm{C}_{\mathrm{i}} & =0 \end{array}$	V mA mW mH $\mu \mathrm{F}$	$\begin{gathered} \text { Ex ia IIB/IIIC } \\ \text { terminals } 9 \text { and } 10 \text {, } \\ \text { terminals } 12 \text { and } 13 \text {, terminals } 17 \text { and 18, terminals } 17 \text { and } 19 \end{gathered}$		
Pulse outputs Option -OT Terminals 3 and 4, terminals 5 and 6	U_{i} $=$ 30 I_{i} $=$ 100 P_{i} $=$ 750 $\mathrm{~L}_{\mathrm{i}}$ $=$ 0 C_{i} $=$ 0	V mA mW mH $\mu \mathrm{F}$	Ex ia IIB/IIIC		
Analog output "open drain" Option -AF and -AP	$\begin{array}{rlr} \mathrm{U}_{\mathrm{i}} & =30 \\ \mathrm{I}_{\mathrm{i}} & = & 100 \\ \mathrm{P}_{\mathrm{i}} & = & 750 \\ \mathrm{~L}_{\mathrm{i}} & = & 0 \\ \mathrm{C}_{\mathrm{i}} & =17 \end{array}$	V mA mW mH nF	Ex ia IIB/IIIC Option-AF: terminals 7 and 8 with respect to terminals $0,3,5,9,12$ and 15. Option -AP: terminals 7 and 8 .		
Pulse/status inputs Terminals 15 and 16	U_{i} $=$ 30 I_{i} $=$ 100 P_{i} $=$ 750 $\mathrm{~L}_{\mathrm{i}}$ $=$ 0 C_{i} $=$ 0	V mA mW mH nF	Or in type of protection intrinsic safety Ex ia IIB/IIIC or Ex ia IIC, with the following maximum values:$\mathrm{U}_{0}=5,4 \mathrm{~V}, \mathrm{I}_{0}=1 \mathrm{~mA}, \mathrm{P}_{0}=2 \mathrm{~mW}, \mathrm{~L}_{0}=1 \mathrm{H}, \mathrm{C}_{0}=65 \mu \mathrm{~F}$		
Data communication circuit Terminals 26, 27, 28, 29, 30 and 31	U_{i} $=$ 30 I_{i} $=$ 250 P_{i} $=$ 850 $\mathrm{~L}_{\mathrm{i}}$ $=$ 0 C_{i} $=$ 0	V mA mW mH nF	Ex ia IIB/IIIC		

Annex 1 to: NL/DEK/ExTR11.0033/02, IECEx DEK 11.0042X, KEMA 03ATEX1074 X Issue 6

	Electrical data		$\begin{aligned} & \text { Model F1 .. -A } \\ & \text { Model F1 .. -U } \end{aligned}$	Model F1 .. -P Model F1 .. -T	Model F1 .. -R
	In type of protection intrinsic safety Ex ia IIB/IIIC or Ex ia IIC, with following maximum values:				
Coil, Switch, PNP, NAMUR inputs In combination with external supply (with option -PD)	$\begin{array}{llr} \mathrm{U}_{0} & = & 8,7 \\ \mathrm{I}_{0} & = & 25 \\ \mathrm{P}_{0} & = & 150 \end{array}$ Ex ia IIB/IIIC	V mA mW	Terminals 13 and 14	Terminals 10 and 11, terminals 13 and 14	Terminals 13 and 14
Coil, Switch, NPN inputs In combination with external supply (with option -PD)	Ex ia IIB/IIIC $\mathrm{L}_{0}=210 \mathrm{mH}$ $\mathrm{C}_{0}=50 \mu \mathrm{~F}$ Ex ia IIC $\mathrm{L}_{0}=52,6 \mathrm{mH}$ $\mathrm{C}_{0}=5,9 \quad \mu \mathrm{~F}$		Terminals 12 and 13	Terminals 9 and 10, terminals 12 and 13	Terminals 12 and 13
Coil, Switch, PNP inputs In combination without external supply (without option-PD)	$\begin{array}{llr} \mathrm{U}_{0} & = & 5,4 \\ \mathrm{I}_{0} & = & 5,2 \\ \mathrm{P}_{0} & = & 7 \end{array}$ Ex ia IIB/IIIC	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \\ & \mathrm{~mW} \end{aligned}$	Terminals 13 and 14	Terminals 10 and 11, terminals 13 and 14	Terminals 13 and 14
Coil, Switch, NPN inputs In combination without external supply (without option -PD)	Ex ia IIB/IIIC $\mathrm{L}_{0}=210 \mathrm{mH}$ $\mathrm{C}_{0}=50 \mu \mathrm{~F}$ Ex ia IIC $\begin{aligned} & \mathrm{L}_{0}=1 \\ & \mathrm{C}_{0}=6 \mathrm{H} \\ & \mu \mathrm{~F} \end{aligned}$		Terminals 12 and 13	Terminals 9 and 10, terminals 12 and 13	Terminals 12 and 13
Potentiometer inputs In combination with external or circuit supply (with option -PD, -AP) Terminals 9, 10 and 11, terminals 12,13 and 14	$\begin{array}{llr} \mathrm{U}_{0} & = & 5,4 \\ \mathrm{I}_{0} & = & 162 \\ \mathrm{P}_{0} & = & 750 \end{array}$ Ex ia IIB/IIIC	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \\ & \mathrm{~mW} \end{aligned}$	N.A.	N.A.	Applicable
Pt100 inputs In combination with external or circuit supply (with option -PD, -AP) Terminals 20, 21 and 22, terminals 23,24 and 25	$\begin{aligned} & \mathrm{C}_{0}=1000 \\ & \text { Ex ia IIC } \\ & \mathrm{L}_{0}= \\ & \mathrm{C}_{0}= \\ & = \end{aligned}$	$\mu \mathrm{F}$ mH $\mu \mathrm{F}$	Applicable		
Potentiometer inputs In combination without external or circuit supply (without options -PD, -AP) Terminals 9, 10 and 11, terminals 12,13 and 14	$\begin{array}{llrl} \mathrm{U}_{0} & = & 5,4 & \mathrm{~V} \\ \mathrm{I}_{0} & = & 40 & \mathrm{~mA} \\ \mathrm{P}_{0} & = & 200 & \mathrm{~mW} \end{array}$ Ex ia IIB/IIIC $\begin{aligned} & \mathrm{L}_{0}=5,3 \mathrm{mH} \\ & \mathrm{C}_{0}=1000 \quad \mu \mathrm{~F} \end{aligned}$ Ex ia IIC $\begin{aligned} & \mathrm{L}_{0}=20 \mathrm{mH} \\ & \mathrm{C}_{0}=65 \mathrm{~F} \end{aligned}$		N.A.	N.A.	Applicable
Pt100 inputs In combination without external or circuit supply (without options -PD, -AP) Terminals 20, 21 and 22, terminals 23,24 and 25			Applicable		
External supply outputs When both terminal 10 and terminal 13 are configured either as analog inputs ($0 / 4-20 \mathrm{~mA}, 0-10 \mathrm{~V}$) or as not available	The maximum output values, including the maximum allowed external capacitance and inductance values are equal to the parameters of the intrinsically safe circuit, connected to the external supply input at terminals 0 and 1.		Ex ia IIB/IIIC Terminals 0 and 2, terminals 9 and 11 , terminals 12 and 14.	Ex ia IIB/IIIC Terminals 0 and 2.	Ex ia IIB/IIIC Terminals 0 and 2
External supply outputs When either terminal 10 or terminal 13 is not configured as analog input ($0 / 4-20 \mathrm{~mA}, 0-10 \mathrm{~V}$) but is / are available			Ex ia IIB/IIIC Only Terminals 0 and 2		

